David Poulter

National Oceanography Centre, Southampton

20th November 2007

- 1 Introduction
 - HR-DDS Concept
 - HR-DDS User Interface
- 2 Progress since Villefranche-sur-Me
 - Architecture
 - New data sets
- 3 Usage
 - About the users
 - New interface prototype
 - Examples of usage
- 4 New Developments
 - Funded developments!!
- 5 Conclusions
 - Final thoughts

- 1 Introduction
 - HR-DDS Concept
 - HR-DDS User Interface
- 2 Progress since Villefranche-sur-Mer
 - Architecture
 - New data sets
- 3 Usage
 - About the users
 - New interface prototype
 - Examples of usage
- 4 New Developments
 - Funded developments!!
- 5 Conclusions
 - Final thoughts

- 1 Introduction
 - HR-DDS Concept
 - HR-DDS User Interface
- 2 Progress since Villefranche-sur-Mer
 - Architecture
 - New data sets
- 3 Usage
 - About the users
 - New interface prototype
 - Examples of usage
- 4 New Developments
 - Funded developments!!
- 5 Conclusions
 - Final thoughts

- 1 Introduction
 - HR-DDS Concept
 - HR-DDS User Interface
- 2 Progress since Villefranche-sur-Mer
 - Architecture
 - New data sets
- 3 Usage
 - About the users
 - New interface prototype
 - Examples of usage
- 4 New Developments
 - Funded developments!!
- 5 Conclusions
 - Final thoughts

- Introduction
 - HR-DDS Concept
 - HR-DDS User Interface
- 2 Progress since Villefranche-sur-Mer
 - Architecture
 - New data sets
- 3 Usage
 - About the users
 - New interface prototype
 - Examples of usage
- 4 New Developments
 - Funded developments!!
- Conclusions
 - Final thoughts

HR-DDS

000

The Medspiration concept of HR-DDS implementation was rather simple:

- To generate for each data chain a collection of common subsets.
- To make these available via OPeNDAP and FTP.
- To make available in some form of quick look imagery

In this sense it really was just an archive of subsets, intended to be used in conjuncture with the MDB as a diagnostic tool for Medspiration.

000

The Medspiration concept of HR-DDS implementation was rather simple:

- To generate for each data chain a collection of common subsets.
- To make these available via OPeNDAP and FTP.
- To make available in some form of quick look imagery

In this sense it really was just an archive of subsets, intended to be used in conjuncture with the MDB as a diagnostic tool for Medspiration.

The Medspiration concept of HR-DDS implementation was rather simple:

- To generate for each data chain a collection of common subsets.
- To make these available via OPeNDAP and FTP.
- To make available in some form of quick look imagery

In this sense it really was just an archive of subsets, intended to be used in conjuncture with the MDB as a diagnostic tool for Medspiration.

HR-DDS Concept

The Medspiration concept of HR-DDS implementation was rather simple:

- To generate for each data chain a collection of common subsets.
- To make these available via OPeNDAP and FTP.
- To make available in some form of quick look imagery

In this sense it really was just an archive of subsets, intended to be used in conjuncture with the MDB as a diagnostic tool for Medspiration.

000

The second version of the HR-DDS incorporated a number of major enhancments:

- The concept of limited 'pre analysis' with some geophysical data being stored in a relational database
- Very limited dynamic quick look generation
- Batch download facilities

The second version of the HR-DDS incorporated a number of major enhancments:

- The concept of limited 'pre analysis' with some geophysical data being stored in a relational database
- Very limited dynamic quick look generation
- Batch download facilities

The second version of the HR-DDS incorporated a number of major enhancments:

- The concept of limited 'pre analysis' with some geophysical data being stored in a relational database
- Very limited dynamic quick look generation
- Batch download facilities

The second version of the HR-DDS incorporated a number of major enhancments:

- The concept of limited 'pre analysis' with some geophysical data being stored in a relational database
- Very limited dynamic quick look generation
- Batch download facilities

HR-DDS Concept

Introduction

The second version of the HR-DDS incorporated a number of major enhancments:

- The concept of limited 'pre analysis' with some geophysical data being stored in a relational database
- Very limited dynamic quick look generation
- Batch download facilities

We are currently building HR-DDS version 3. Specifically designed to meet the expected requirements of MyOcean, with three major shifts in implementation:

- User specific services, i.e. configuration pages, languages, filtering etc.
- More dynamic user experience, i.e. heated layer calculations or DV model estimations
- More ingestion pathways. Specifically to include wave data and ocean colour data.

We are currently building HR-DDS version 3. Specifically designed to meet the expected requirements of MyOcean, with three major shifts in implementation:

- User specific services, i.e. configuration pages, languages, filtering etc.
- More dynamic user experience, i.e. heated layer calculations or DV model estimations
- More ingestion pathways. Specifically to include wave data and ocean colour data.

We are currently building HR-DDS version 3. Specifically designed to meet the expected requirements of MyOcean, with three major shifts in implementation:

- User specific services, i.e. configuration pages, languages, filtering etc.
- More dynamic user experience, i.e. heated layer calculations or DV model estimations
- More ingestion pathways. Specifically to include wave data and ocean colour data.

HR-DDS Concept

We are currently building HR-DDS version 3. Specifically designed to meet the expected requirements of MyOcean, with three major shifts in implementation:

- User specific services, i.e. configuration pages, languages, filtering etc.
- More dynamic user experience, i.e. heated layer calculations or DV model estimations
- More ingestion pathways. Specifically to include wave data and ocean colour data.

We are currently building HR-DDS version 3. Specifically designed to meet the expected requirements of MyOcean, with three major shifts in implementation:

- User specific services, i.e. configuration pages, languages, filtering etc.
- More dynamic user experience, i.e. heated layer calculations or DV model estimations
- More ingestion pathways. Specifically to include wave data and ocean colour data.

- All computers now run a common HR-DDS 'package', containing the code for the controller, workstation and server configurations. Everything is hot swappable.
- System is now operated by an interactive command program which controls machine load. Processing times for 24 hours of data is now 50 minutes. (Was 18 hours for HR-DDS version 1 and 6 hours for HR-DDS version 2)
- All machines run the same operating system.

- All computers now run a common HR-DDS 'package', containing the code for the controller, workstation and server configurations. Everything is hot swappable.
- System is now operated by an interactive command program which controls machine load. Processing times for 24 hours of data is now 50 minutes. (Was 18 hours for HR-DDS version 1 and 6 hours for HR-DDS version 2)
- All machines run the same operating system.

- All computers now run a common HR-DDS 'package', containing the code for the controller, workstation and server configurations. Everything is hot swappable.
- System is now operated by an interactive command program which controls machine load. Processing times for 24 hours of data is now 50 minutes. (Was 18 hours for HR-DDS version 1 and 6 hours for HR-DDS version 2)
- All machines run the same operating system.

- All computers now run a common HR-DDS 'package', containing the code for the controller, workstation and server configurations. Everything is hot swappable.
- System is now operated by an interactive command program which controls machine load. Processing times for 24 hours of data is now 50 minutes. (Was 18 hours for HR-DDS version 1 and 6 hours for HR-DDS version 2)
- All machines run the same operating system.

These changes have dramatically reduced maintenance overheads. Processing times have also improved significantly.

HR-DDS

- All computers now run a common HR-DDS 'package', containing the code for the controller, workstation and server configurations. Everything is hot swappable.
- System is now operated by an interactive command program which controls machine load. Processing times for 24 hours of data is now 50 minutes. (Was 18 hours for HR-DDS version 1 and 6 hours for HR-DDS version 2)
- All machines run the same operating system.

We are now operationally ingesting the following new data sets

- DMI 0.03 degree foundation analysis SST. This is a interesting product as it is gives by far the most spatially complicated SST patterns of all analysis.
- ODYSSEA 0.1 degree analysis product produced by Emmanuelle (?). Comparable to OSTIA but not as smooth
- REMSS TMI SSTs from GDAC.

HR-DDS

- DMI 0.03 degree foundation analysis SST. This is a interesting product as it is gives by far the most spatially complicated SST patterns of all analysis.
- ODYSSEA 0.1 degree analysis product produced by Emmanuelle (?). Comparable to OSTIA but not as smooth.....
- REMSS TMI SSTs from GDAC.

- DMI 0.03 degree foundation analysis SST. This is a interesting product as it is gives by far the most spatially complicated SST patterns of all analysis.
- ODYSSEA 0.1 degree analysis product produced by Emmanuelle (?). Comparable to OSTIA but not as smooth.....
- REMSS TMI SSTs from GDAC.

New data sets

- DMI 0.03 degree foundation analysis SST. This is a interesting product as it is gives by far the most spatially complicated SST patterns of all analysis.
- ODYSSEA 0.1 degree analysis product produced by Emmanuelle (?). Comparable to OSTIA but not as smooth.....
- REMSS TMI SSTs from GDAC.

New data sets

- DMI 0.03 degree foundation analysis SST. This is a interesting product as it is gives by far the most spatially complicated SST patterns of all analysis.
- ODYSSEA 0.1 degree analysis product produced by Emmanuelle (?). Comparable to OSTIA but not as smooth.....
- REMSS TMI SSTs from GDAC.

We are pre-operationally ingesting the following:

- MW OI 0.25 degree
- MW + AVHRR OI 0.25 degree
- SAF L3 'super collated' ¹ SST
- Medspiration Galapagos L4 product

These should be ingested by the end of the month, although the L3 product may take a bit longer.

¹Sorry Pierre and Ken!

We are pre-operationally ingesting the following:

- MW OI 0.25 degree
- MW + AVHRR OI 0.25 degree
- SAF L3 'super collated' ¹ SST
- Medspiration Galapagos L4 product

These should be ingested by the end of the month, although the L3 product may take a bit longer.

¹Sorry Pierre and Ken!

New data sets

We are pre-operationally ingesting the following:

- MW OI 0.25 degree
- MW + AVHRR OI 0.25 degree
- SAF L3 'super collated' ¹ SST
- Medspiration Galapagos L4 product

These should be ingested by the end of the month, although the L3 product may take a bit longer.

¹Sorry Pierre and Ken!

We are pre-operationally ingesting the following:

- MW OI 0.25 degree
- MW + AVHRR OI 0.25 degree
- SAF L3 'super collated' ¹ SST
- Medspiration Galapagos L4 product

These should be ingested by the end of the month, although the L3 product may take a bit longer.

¹Sorry Pierre and Ken!

New data sets

We are pre-operationally ingesting the following:

- MW OI 0.25 degree
- MW + AVHRR OI 0.25 degree
- SAF L3 'super collated' ¹ SST
- Medspiration Galapagos L4 product

These should be ingested by the end of the month, although the L3 product may take a bit longer.

¹Sorry Pierre and Ken!

We are pre-operationally ingesting the following:

- MW OI 0.25 degree
- MW + AVHRR OI 0.25 degree
- SAF L3 'super collated' ¹ SST
- Medspiration Galapagos L4 product

These should be ingested by the end of the month, although the L3 product may take a bit longer.

¹Sorry Pierre and Ken!

The number of user sessions now average approximately 1

Usage

- Average transfer is in the order of 75 MBytes per day
- There are several automatic transfers set up that run once
- Surprisingly (?), Google reports there are far more links to

The number of user sessions now average approximately 1 per minute.

Usage

- Average transfer is in the order of 75 MBytes per day (Note, the average DDS granule is 4 KBytes)
- There are several automatic transfers set up that run once a day - users unidentified so far.
- Surprisingly (?), Google reports there are far more links to 'DDS + pain' than to 'DDS + SST'.....

- The number of user sessions now average approximately 1 per minute.
- Average transfer is in the order of 75 MBytes per day (Note, the average DDS granule is 4 KBytes)
- There are several automatic transfers set up that run once
- Surprisingly (?), Google reports there are far more links to

The number of user sessions now average approximately 1 per minute.

Usage

- Average transfer is in the order of 75 MBytes per day (Note, the average DDS granule is 4 KBytes)
- There are several automatic transfers set up that run once a day - users unidentified so far.
- Surprisingly (?), Google reports there are far more links to 'DDS + pain' than to 'DDS + SST'.....

- The number of user sessions now average approximately 1 per minute.
- Average transfer is in the order of 75 MBytes per day (Note, the average DDS granule is 4 KBytes)
- There are several automatic transfers set up that run once a day - users unidentified so far.
- Surprisingly (?), Google reports there are far more links to 'DDS + pain' than to 'DDS + SST'.....

- The number of user sessions now average approximately 1 per minute.
- Average transfer is in the order of 75 MBytes per day (Note, the average DDS granule is 4 KBytes)
- There are several automatic transfers set up that run once a day - users unidentified so far.
- Surprisingly (?), Google reports there are far more links to 'DDS + pain' than to 'DDS + SST'.....

- NOCS, UKMO, MF/CMS, UoE, EUMETSAT, NOAA, CSIRO, ESA
- Interestingly, users tend to be from UK, France, Germany and Canada
- There have been some unusual heavy users Samsung in South Korea and a High School in Portugal.

However, the most interesting statistic is that only 1 user in the last 2 months found the site from the GHRSST page. Almost everyone else arrived directly or from Google.

HR-DDS

Usage

We do have some expected repeat users:

- NOCS, UKMO, MF/CMS, UoE, EUMETSAT, NOAA, CSIRO, ESA
- Interestingly, users tend to be from UK, France, Germany and Canada
- There have been some unusual heavy users Samsung in South Korea and a High School in Portugal.

However, the most interesting statistic is that only 1 user in the last 2 months found the site from the GHRSST page. Almost everyone else arrived directly or from Google.

- NOCS, UKMO, MF/CMS, UoE, EUMETSAT, NOAA, CSIRO, ESA
- Interestingly, users tend to be from UK, France, Germany and Canada

Usage

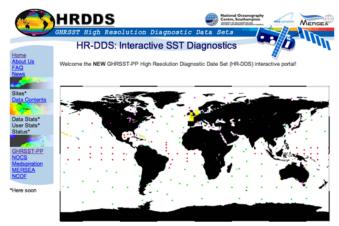
■ There have been some unusual heavy users - Samsung in

- NOCS, UKMO, MF/CMS, UoE, EUMETSAT, NOAA, CSIRO. ESA
- Interestingly, users tend to be from UK, France, Germany and Canada
- There have been some unusual heavy users Samsung in South Korea and a High School in Portugal.

However, the most interesting statistic is that only 1 user in the last 2 months found the site from the GHRSST page. Almost everyone else arrived directly or from Google.

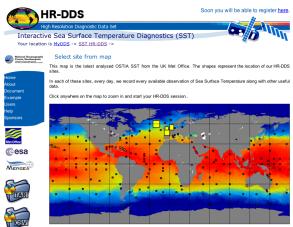
- NOCS, UKMO, MF/CMS, UoE, EUMETSAT, NOAA, CSIRO. ESA
- Interestingly, users tend to be from UK, France, Germany and Canada

Usage


There have been some unusual heavy users - Samsung in South Korea and a High School in Portugal.

However, the most interesting statistic is that only 1 user in the last 2 months found the site from the GHRSST page. Almost everyone else arrived directly or from Google.

Usage


The old site looked like this (www.hrdds.net):

Copyright NOCS 2005-2006. Maintained by David Poulter. To link this page copy this link.

The new site looks like this (medserve.noc.soton.ac.uk/mydds/sst):

D. J. S. Poulter NOCS

- The background is the latest OSTIA image (updated 15:00 each day)
- The screen includes a drop down menu on the left side which perpetuates through the users session
- The screen includes obvious links to FTP, OPeNDAP, TAR and CSV data downloads.

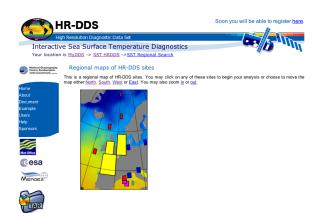
- The background is the latest OSTIA image (updated 15:00 each day)
- The screen includes a drop down menu on the left side which perpetuates through the users session
- The screen includes obvious links to FTP, OPeNDAP, TAR and CSV data downloads

New interface prototype

- The background is the latest OSTIA image (updated 15:00 each day)
- The screen includes a drop down menu on the left side which perpetuates through the users session
- The screen includes obvious links to FTP, OPeNDAP, TAR and CSV data downloads.

Introduction

- The background is the latest OSTIA image (updated 15:00 each day)
- The screen includes a drop down menu on the left side which perpetuates through the users session
- The screen includes obvious links to FTP, OPeNDAP, TAR and CSV data downloads.


Introduction

- The background is the latest OSTIA image (updated 15:00 each day)
- The screen includes a drop down menu on the left side which perpetuates through the users session
- The screen includes obvious links to FTP, OPeNDAP, TAR and CSV data downloads.

New interface prototype

Users had reported the old map interface was cumbersome, the new one is easier:

Users had reported bad rendering of images in FireFox, and slow page loads.:

- Every dynamic image produced on the site is cached server side for at least 24 hours
- Every dynamic image is thumbnailed to allow better rendering and fast browser performance.
- We have included web object graphics to give a smother feel ti the site

Specifically, 'hourglass' page loading graphics and background fadeouts provide for a more elegant feel...

HR-DDS

Users had reported bad rendering of images in FireFox, and slow page loads.:

- Every dynamic image produced on the site is cached server side for at least 24 hours
- Every dynamic image is thumbnailed to allow better rendering and fast browser performance.
- We have included web object graphics to give a smother feel ti the site

Users had reported bad rendering of images in FireFox, and slow page loads.:

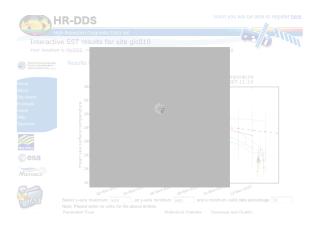
- Every dynamic image produced on the site is cached server side for at least 24 hours
- Every dynamic image is thumbnailed to allow better rendering and fast browser performance.
- We have included web object graphics to give a smother feel ti the site

Introduction

Users had reported bad rendering of images in FireFox, and slow page loads.:

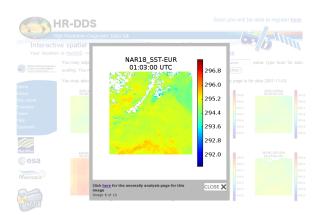
- Every dynamic image produced on the site is cached server side for at least 24 hours
- Every dynamic image is thumbnailed to allow better rendering and fast browser performance.
- We have included web object graphics to give a smother feel ti the site

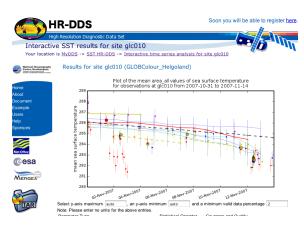
Introduction


Users had reported bad rendering of images in FireFox, and slow page loads.:

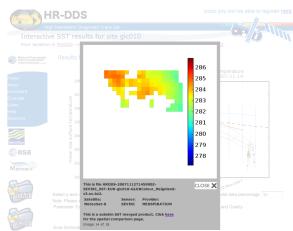
- Every dynamic image produced on the site is cached server side for at least 24 hours
- Every dynamic image is thumbnailed to allow better rendering and fast browser performance.
- We have included web object graphics to give a smother feel ti the site

Usage ○○ ○○○○○○

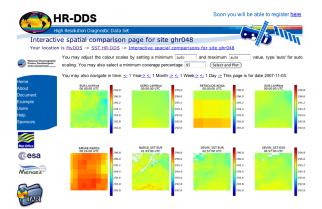

Faded backgrounds make the page focus clearer

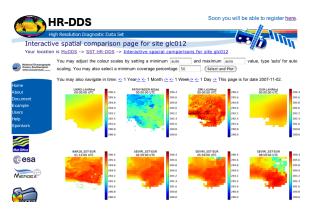

Usage

Most images can be enlarged through a server side function:

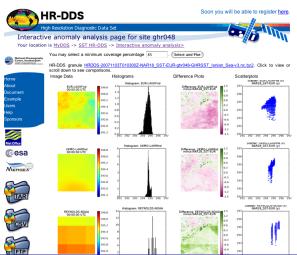


Data can now be filtered by a minimum percentage of SST in granule:


Clicking on a point reveals a dynamic quick look image. Note that the colour bar is scaleble:

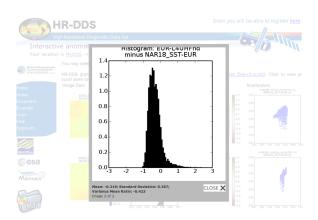

NOCS

The spatial comparison pages can now be navigated by date.


Identification of spatial anomalies is far easier. For example the complexity of the DMI analysis

NOCS

The anomaly analysis has been enhanced.



NOCS

D. J. S. Poulter

Inter-comparisons are more meaningful

The National Centre for Ocean Forecasting (NCOF) has funded us to perform a number of enhancements:

- Must ingest METOP-A, GOES and AMM SSTs.
- Must attempt to ingest MODIS-A SSTs
- We have to ingest *in situ* SSTs from CORIOLIS²

Plus a large effort on......

The National Centre for Ocean Forecasting (NCOF) has funded us to perform a number of enhancements:

- Must ingest METOP-A, GOES and AMM SSTs.
- Must attempt to ingest MODIS-A SSTs
- We have to ingest in situ SSTs from CORIOLIS²

Plus a large effort on......

²Just for Pierre!

D. J. S. Poulter

Introduction

The National Centre for Ocean Forecasting (NCOF) has funded us to perform a number of enhancements:

- Must ingest METOP-A, GOES and AMM SSTs.
- Must attempt to ingest MODIS-A SSTs
- We have to ingest in situ SSTs from CORIOLIS²

Plus a large effort on......

²Just for Pierre!

D. J. S. Poulter

Introduction

The National Centre for Ocean Forecasting (NCOF) has funded us to perform a number of enhancements:

- Must ingest METOP-A, GOES and AMM SSTs.
- Must attempt to ingest MODIS-A SSTs
- We have to ingest in situ SSTs from CORIOLIS²

Plus a large effort on......

²Just for Pierre!

Documentation, documentation and documentation:

- Online documentation
- Interactive documentation

Documentation, documentation and documentation:

- Online documentation
- Interactive documentation

Documentation, documentation and documentation:

- Online documentation
- Interactive documentation

Introduction

Documentation, documentation and documentation:

- Online documentation
- Interactive documentation

Introduction

We have added automatic bug reporting features to the website

HR-DDS

- Disability awareness features (text enlargement)
- 'Make a suggestion' feature
- Consistent level of mouse overlay documentation

- Disability awareness features (text enlargement)
- 'Make a suggestion' feature
- Consistent level of mouse overlay documentation

- Disability awareness features (text enlargement)
- 'Make a suggestion' feature
- Consistent level of mouse overlay documentation

- Disability awareness features (text enlargement)
- 'Make a suggestion' feature
- Consistent level of mouse overlay documentation

Excitingly, we have also been asked to produce a Wave HR-DDS:

- Spectral inter-comparisons.
- Should contain in situ and model observations
- and of course...

... a large effort on documentation

Excitingly, we have also been asked to produce a Wave HR-DDS:

- Spectral inter-comparisons.
- Should contain *in situ* and model observations
- and of course...

... a large effort on documentation.

Excitingly, we have also been asked to produce a Wave HR-DDS:

- Spectral inter-comparisons.
- Should contain *in situ* and model observations
- and of course...

... a large effort on documentation

Excitingly, we have also been asked to produce a Wave HR-DDS:

- Spectral inter-comparisons.
- Should contain *in situ* and model observations
- and of course...

... a large effort on documentation.

- HR-DDS is regarded as an infrastructure service within the SST community
- The HR-DDS model is regarded with interest form other communities (colour, wave, ice)
- HR-DDS is secure within MyOcean and has considerable support form within, specifically, the UK.

- HR-DDS is regarded as an infrastructure service within the SST community
- The HR-DDS model is regarded with interest form other communities (colour, wave, ice)
- HR-DDS is secure within MyOcean and has considerable support form within, specifically, the UK.

Introduction

- HR-DDS is regarded as an infrastructure service within the SST community
- The HR-DDS model is regarded with interest form other communities (colour, wave, ice)
- HR-DDS is secure within MyOcean and has considerable support form within, specifically, the UK.

Introduction

- HR-DDS is regarded as an infrastructure service within the SST community
- The HR-DDS model is regarded with interest form other communities (colour, wave, ice)
- HR-DDS is secure within MyOcean and has considerable support form within, specifically, the UK.

